extension | φ:Q→Out N | d | ρ | Label | ID |
(C32×Dic3)⋊1C22 = S3×C3⋊D12 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 24 | 8+ | (C3^2xDic3):1C2^2 | 432,598 |
(C32×Dic3)⋊2C22 = D6⋊S32 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 48 | 8- | (C3^2xDic3):2C2^2 | 432,600 |
(C32×Dic3)⋊3C22 = (S3×C6)⋊D6 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 24 | 8+ | (C3^2xDic3):3C2^2 | 432,601 |
(C32×Dic3)⋊4C22 = C3⋊S3⋊4D12 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 24 | 8+ | (C3^2xDic3):4C2^2 | 432,602 |
(C32×Dic3)⋊5C22 = C3×S3×C3⋊D4 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 24 | 4 | (C3^2xDic3):5C2^2 | 432,658 |
(C32×Dic3)⋊6C22 = C3×Dic3⋊D6 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 24 | 4 | (C3^2xDic3):6C2^2 | 432,659 |
(C32×Dic3)⋊7C22 = C3⋊S3×C3⋊D4 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3):7C2^2 | 432,685 |
(C32×Dic3)⋊8C22 = C62⋊23D6 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 36 | | (C3^2xDic3):8C2^2 | 432,686 |
(C32×Dic3)⋊9C22 = S32×Dic3 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 48 | 8- | (C3^2xDic3):9C2^2 | 432,594 |
(C32×Dic3)⋊10C22 = S3×C6.D6 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 24 | 8+ | (C3^2xDic3):10C2^2 | 432,595 |
(C32×Dic3)⋊11C22 = Dic3⋊6S32 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 48 | 8- | (C3^2xDic3):11C2^2 | 432,596 |
(C32×Dic3)⋊12C22 = S3×C12⋊S3 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3):12C2^2 | 432,671 |
(C32×Dic3)⋊13C22 = C2×C33⋊8D4 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3):13C2^2 | 432,682 |
(C32×Dic3)⋊14C22 = C3×S3×D12 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 48 | 4 | (C3^2xDic3):14C2^2 | 432,649 |
(C32×Dic3)⋊15C22 = C6×C3⋊D12 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 48 | | (C3^2xDic3):15C2^2 | 432,656 |
(C32×Dic3)⋊16C22 = S32×C12 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 48 | 4 | (C3^2xDic3):16C2^2 | 432,648 |
(C32×Dic3)⋊17C22 = S3×C6×Dic3 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 48 | | (C3^2xDic3):17C2^2 | 432,651 |
(C32×Dic3)⋊18C22 = C6×C6.D6 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 48 | | (C3^2xDic3):18C2^2 | 432,654 |
(C32×Dic3)⋊19C22 = C4×S3×C3⋊S3 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3):19C2^2 | 432,670 |
(C32×Dic3)⋊20C22 = C2×Dic3×C3⋊S3 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 144 | | (C3^2xDic3):20C2^2 | 432,677 |
(C32×Dic3)⋊21C22 = C2×C33⋊8(C2×C4) | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3):21C2^2 | 432,679 |
(C32×Dic3)⋊22C22 = S3×D4×C32 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3):22C2^2 | 432,704 |
(C32×Dic3)⋊23C22 = C3×C6×C3⋊D4 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3):23C2^2 | 432,709 |
(C32×Dic3)⋊24C22 = S3×C6×C12 | φ: trivial image | 144 | | (C3^2xDic3):24C2^2 | 432,701 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C32×Dic3).1C22 = S3×C32⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 48 | 8- | (C3^2xDic3).1C2^2 | 432,603 |
(C32×Dic3).2C22 = C33⋊5(C2×Q8) | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 48 | 8- | (C3^2xDic3).2C2^2 | 432,604 |
(C32×Dic3).3C22 = C33⋊6(C2×Q8) | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 24 | 8+ | (C3^2xDic3).3C2^2 | 432,605 |
(C32×Dic3).4C22 = D6.4S32 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 48 | 8- | (C3^2xDic3).4C2^2 | 432,608 |
(C32×Dic3).5C22 = D6.3S32 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 24 | 8+ | (C3^2xDic3).5C2^2 | 432,609 |
(C32×Dic3).6C22 = D6.6S32 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 48 | 8- | (C3^2xDic3).6C2^2 | 432,611 |
(C32×Dic3).7C22 = Dic3.S32 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 24 | 8+ | (C3^2xDic3).7C2^2 | 432,612 |
(C32×Dic3).8C22 = C3×S3×Dic6 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 48 | 4 | (C3^2xDic3).8C2^2 | 432,642 |
(C32×Dic3).9C22 = C3×D12⋊S3 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 48 | 4 | (C3^2xDic3).9C2^2 | 432,644 |
(C32×Dic3).10C22 = C3×Dic3.D6 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 48 | 4 | (C3^2xDic3).10C2^2 | 432,645 |
(C32×Dic3).11C22 = C3×D6.6D6 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 48 | 4 | (C3^2xDic3).11C2^2 | 432,647 |
(C32×Dic3).12C22 = C3×D6.4D6 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 24 | 4 | (C3^2xDic3).12C2^2 | 432,653 |
(C32×Dic3).13C22 = C3⋊S3×Dic6 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 144 | | (C3^2xDic3).13C2^2 | 432,663 |
(C32×Dic3).14C22 = C12.39S32 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3).14C2^2 | 432,664 |
(C32×Dic3).15C22 = C12.40S32 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3).15C2^2 | 432,665 |
(C32×Dic3).16C22 = C32⋊9(S3×Q8) | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3).16C2^2 | 432,666 |
(C32×Dic3).17C22 = C62.90D6 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3).17C2^2 | 432,675 |
(C32×Dic3).18C22 = C62.91D6 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3).18C2^2 | 432,676 |
(C32×Dic3).19C22 = (S3×C6).D6 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 24 | 8+ | (C3^2xDic3).19C2^2 | 432,606 |
(C32×Dic3).20C22 = D6.S32 | φ: C22/C1 → C22 ⊆ Out C32×Dic3 | 48 | 8- | (C3^2xDic3).20C2^2 | 432,607 |
(C32×Dic3).21C22 = S3×C32⋊4Q8 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 144 | | (C3^2xDic3).21C2^2 | 432,660 |
(C32×Dic3).22C22 = C12.73S32 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3).22C2^2 | 432,667 |
(C32×Dic3).23C22 = C2×C33⋊4Q8 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 144 | | (C3^2xDic3).23C2^2 | 432,683 |
(C32×Dic3).24C22 = C3×D6.D6 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 48 | 4 | (C3^2xDic3).24C2^2 | 432,646 |
(C32×Dic3).25C22 = C6×C32⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 48 | | (C3^2xDic3).25C2^2 | 432,657 |
(C32×Dic3).26C22 = C3×D12⋊5S3 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 48 | 4 | (C3^2xDic3).26C2^2 | 432,643 |
(C32×Dic3).27C22 = C3×D6.3D6 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 24 | 4 | (C3^2xDic3).27C2^2 | 432,652 |
(C32×Dic3).28C22 = C12.57S32 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 144 | | (C3^2xDic3).28C2^2 | 432,668 |
(C32×Dic3).29C22 = C12.58S32 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3).29C2^2 | 432,669 |
(C32×Dic3).30C22 = C62.93D6 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3).30C2^2 | 432,678 |
(C32×Dic3).31C22 = C3×C6×Dic6 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 144 | | (C3^2xDic3).31C2^2 | 432,700 |
(C32×Dic3).32C22 = C32×C4○D12 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3).32C2^2 | 432,703 |
(C32×Dic3).33C22 = C32×D4⋊2S3 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 72 | | (C3^2xDic3).33C2^2 | 432,705 |
(C32×Dic3).34C22 = S3×Q8×C32 | φ: C22/C2 → C2 ⊆ Out C32×Dic3 | 144 | | (C3^2xDic3).34C2^2 | 432,706 |
(C32×Dic3).35C22 = C32×Q8⋊3S3 | φ: trivial image | 144 | | (C3^2xDic3).35C2^2 | 432,707 |